COMPUTER METHODS Course code: 11.9-WILŚ-BUD-MKOM-KB02 Type of course: compulsory knowledge of computational methods, Entry requirements: strength of materials and structural mechanics, computer system and programming language Language of instruction: Polish dr hab. inż. Mieczysław Kuczma prof. UZ Director of studies: Department of Structural Mechanics dr hab. inż. Mieczysław Kuczma prof. UZ, Name of lecturer: dr inż. Krzysztof Kula, dr inż. Waldemar Szajna, mgr inż. Arkadiusz Denisiewicz hours teaching hours per semester teaching hou per week Number of ð Semester Number of Form of receiving a credit Number Form of **ECTS** instruction credits for a course allocated Full-time studies Lecture 15 1 Grade Class 2 Laboratory 30 Grade IV Seminar Workshop **Project** 4 Part-time studies 10 Grade Lecture 1 Class Laboratory 20 2 Grade IV Seminar Workshop **Project** ## **COURSE CONTENTS:** Lecture Minimization of the functional of total potential energy and the equation of virtual work for problems in mechanics. Approximation properties of the finite element method (FEM) for weak formulations of boundary value problems in structural mechanics - approximation error, convergence rate and adaptive FEM. Numerical analysis of plates and shells by the finite element method - conforming and non-conforming finite elements. Numerical direct and iteration methods for eigenvalue problems of structural stability and dynamics. Geometrically and physically nonlinear problems in structural mechanics. Linearization of nonlinear problems. Newton-Raphson method and its applications to nonlinear problems in mechanics (elasto-plastic). Finite difference method and numerical integration methods for equations of motion. Conditional and unconditional stability of time integration methods. Introduction to the boundary element method. ## Laboratory - 1. Analysis of elastic plates by the finite element method. - 2. Elasto-plastic analysis of two-dimensional structures (plate or frame) by the finite element method. ## **LEARNING OUTCOMES:** Competence and skill to understand and use (i) the finite element approximation and modelling of systems of any geometry, (ii) the FEM algorithms for advanced structural problems, (iii) contemporary computer methods in engineering practice, and (IV) advanced computer programs for engineering calculations. #### **ASSESSMENT CRITERIA:** Lecture - to receive a credit for final test. Project – to receive a credit for all projects and tests. #### **RECOMMENDED READING:** - Rakowski G., Kacprzyk Z.: Metoda elementów skończonych w mechanice konstrukcji, Wyd. PW, Warszawa 2005. - Zienkiewicz O.C., Metoda elementów skończonych. Arkady, Warszawa 1972. - 3. Praca zbiorowa, Mechanika budowli: ujecie komputerowe, t. 2 , t. 3, Arkady, Warszawa 1992, 1995 - Łodygowski T., Kąkol W., Metoda elementów skończonych. Politechnika Poznańska, Poznań 1994. - Rajche J., Pryputniewicz S., Bryś G., Projektowanie wspomagane komputerem. Cz. II: Metoda elementów skończonych. WSInż., Zielona Góra 1991 - 6. Piecha, Programowanie w języku Fortran 90 i 95. Politechnika Warszawska, Warszawa 2000. ## **OPTIONAL READING:** - 1. Kleiber M. (red.), Komputerowe metody mechaniki ciał stałych. PWN, Warszawa 1995. - Zienkiewicz O.C., Taylor R., The Finite Element Method. Vol. 1: The Basis, Vol. 2: Solid Mechanics. Oxford: Butterworth-Heinemann, 2000 - 3. Wriggers P., Nichtlineare Finite-Element-Methoden. Springer, Berlin 2001. - 4. Dahlquist G., Bjoerck A., Numerical methods in Scientific Computing. vol. I, SIAM, Philadelphia 2008.